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LOW-SPEED INVESTIGATION OF DEEFI.JETABI;E WING-TIP ELEVATORS 

ON A LOW-ASPECT-RATIO UNTAPERED 45O SWEPTBACK 

By Jack  Fischel and W i U l a m  M. O ' H a r e  

A low-speed wind-tunnel  investigation t o  determine the  longitudinal 
control characteristics of deflectable  wing-tip  elevators on a low-aspect- 
ratio,  untapered, 450 sweptback semispan wing w a s  made i n   t h e  Langley 
300 MPH 7- by  10-foot  tunnel. The elevators  investigated had triangular 
and parallelograsrmic  plan forms and f la t -plate   prof i les .  These control 
surfaces were investigated on the   plain wing and on the wing with a 
rectangular end plate  (to  simulate a ve r t i ca l   f i n )  mounted inboard of 
the  elevators . 

The resu l t s  of the investigation  indicated  that  deflectable wing-  
t i p  elevators compare favorably with conventional  flap-type  trailing- 
edge controls 'of the same area for producing  longitudinal  control on a 
swept-wing t a i l l e s s  aircraft. 

The triangular  wing-tip  elevator was generally  sl ightly more effec- 
t i v e   t h a n   t h e   p a z a l l e l o g r d c  wing-tip  elevator. The end p la te  had only 
a slight ef fec t  on the  effectiveness of either elevator  plan form. 

A comparison between experfmental and estimated values of pitching 
moment produced by the  deflectable  wing-tip  controls showed that their ' 

effectiveness  could be predlcted  with  reasonable  accuracy at low angles 
of attack. 

INTRODUCTION 

The National Advisory Committee for  Aeronautics i s  currently inves- 
tigating  various  devices  for  use  in  providing  adequate  control on tran- 
sonic and supersonic wing conffgurations. The deflectable  wing-tip 
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elevator is one of the  longitudinal-control  devices  being  considered 
and investigated  for  use on sweptback-wing tailless a i rc raf t .  This 
elevator  consists of t he   en t i r e   t i p  of  each wing and i s  deflected about 
a spanwise hinge  axis approximately normal t o  the plane of symmetry. 

A low-speed investigation conducted i n   t h e  Langley 300 MPH 7- by 
10-foot  tunnel on a 45' sweptback semispan wing  model showed that 
deflectable  wing-tip  controls  provided  adequate lateral control over 
the  entire  angle-of-attack  range  (reference 1). In order t o  determine 
the longitudinal  control  characteristfcs  of  deflectable  wing-tip  controls 
on a swept-wing  model, lift, drag, .and pitching-moment data  obtained at 
various  control  deflectioqs  during the course of the investigation 
reported in  reference 1 are presented  herein. Parallelograrmnfc- and 
triangular-plan-form  wing-tip  elevators having f la t -plate   prof i les  and 
equal  areas were investigated on the wing model through a large wing- 
angle-of-attack  range and at elevator  deflections up t o  300. The wing 
configurations had aspect  ratios of 1.87 and 2.31 for   the wing w i t h  the 
parallelogrammic-pla-form control and the  triangular-plan-form  control, 
respectively. These configurations were investigated wlth and without 
a large end plate  (simulating a ve r t i ca l   f i n )  mounted on the wing inboard 
of  the wing-tip elevators. 

Inasmuch as the span of the wing equipped with the parallelogrammic 
and triangular  wing-tip  elevators  differed  appreciably  (fig. l), a l l  
data  presented  are based on the dhensions of the basic uing plus  the 
control surface. 

The forces and moments measured on the wings are presented  about 
the wind axes, which, f o r  the ccnditions of these tests (zero yaw), 
correspond t o   t h e   s t a b i l i t y  8xes. A l l  three axes intersect  at the   inter-  
section of the chord plane and the 25-percent-chord s ta t ion of the mean 
aerodynamic chord at the root of the models ( f i g .  1). 

The symbols used i n  the presentation of results are as follows: 

lift coefficient (L/qS) 

drag coefficient (D/qS) 

pitching-moment coefficient (M/qSc') 

incremental pitching-moment coefficient produced by elevator 
deflection 
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wing mean aerodynamic chord (wlng with pmallelogrammic-plan- 

loca l  wing chord, feet 

twice span of each semispan model, including  elevator (wing 
with paralle1ograd.c-plan-form elevator, 6.28 ft; wing 
with triangular-plan-form  elevator, 6.97 f%) 

la teral   d is tance from p a e  of symmetry, f e e t  

twice  mea of each  semispan model, includLng elevator 
(21.02 sq ft) 

twice l i f t  of semispan m o d e l s ,  pounds 

twice drag of semispan models, pounds 

twlce  pitching mment of semispan models about Y - a x i s ,  
foot  -pounds 

free-stream dynamic pressure, pounds per square foot 

free-stream velocity,  feet per second 

mass density of  alr, slugs per  cubic  foot 

angle of attack with respec t   to  chord plane a t  root. of 
models, degrees 

elevator  deflection, measured between wing chord plaze and 
elevator chord plane  (positive when t r d l i n g  edge is  down), 
degrees 

wing aspect  ratio (wing with parallelopanrmic-plan-form 
elevator, 1.87; wing with trian~1ar-p1an-form  elevator, 2.31) 
( W S )  

r a t e  of chbsge of pitching-moment coefficient with elevator 
deflection, at a = 00 and 6 = 00 ( %,/a) 

longitudinal  distance along chord plane from center of moments 
of  wfng plus  control  surface t o  center of moments of wing-tip 
control  surface alone, f ee t  



4 

CORRECTIONS 

The angle-of-attack and drag  data have been corrected  for jet- 
boundary (induced-upwash) effects  according t o  the methods of refer- 
ence 2. Blockage corrections were applied t o   t h e  test  data by the 
metl!?ds of reference 3.  

MODEL AND APPARATUS 

The semispan wing model w a s  mounted ver t ica l ly  in  the Langley 
300 MPH 7-by 10-foot tunnel with  the  root chord of the model adjacent 
to   the  cei l ing  ( f ig .  21, the  ceiling  thereby  acting as a ref lect ion 
plane. The wing, exclusive of elevators, was constructed  of steel and 
mahogany t o  the plan-form dimensions shown in figure 1. The wing had 
NACA 64A010 airfoi l   sect ions normal t o   t h e  wing leading edge  and  had 
neither twist nor dihedral. The wing t i p  was a body of  revolution. 

A'vertical  end plate  which roughly approximated a ver t ica l  t a i l  
surface was mounted on the main p& of  the wing, inboard of the wing- 
t i p  body of revolution,  for a portion of the  investigation. This end 
plate  was a 1 - inch-thick  sheet of plywood with rounded edges and was 

cut   to   the plan-form  dimensions and  mounted 011 the  w l n g  as shown i n  
figure 1. 

2 

Two plan forms of  wing-tip  controls were used i n  the  present  inves- 
tigation; one control  surface had  a parallelopammic  plan form, and the 
other a triangular  plan form. Both control  surfaces had equal root  
chords and equal  areas  (fig. 1) and  were constructed of -inch  sheet 

dualumin with a rounded leading edge and a Eo beveled trailing edge 
along the  entire span of each  control  surface. The t r a i l i ng  edges  of 
both  control  surfaces were swept back 4 5 O .  The elevators were deflected 
about a spanwise axis  passing  through  the  0.5-tip-chord  station of the 
wing  and the 0.5-root-chord s ta t ion of the elevator. 

'4 

Although the  elevators  investigated  did  not have conventional 
airfoil   sections,  as would probably be the  case in a practical  applica- 
tion, the  controls  are  believed  to  simulate an actual  airplane  arrange- 
ment suff ic ient ly  w e l l  t o  supply representative  data. 
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TESTS 

A l l  tests were performed i n  the Langley 300 MPH 7- by 10-foot  tun- 
n e l   a t  a dynamic-pressure of approximately 50.5 pounds per  square  foot, 
which corresponds t o  a Mach  number of 0.19 and a  Reynolds number of 
about 4.4 x IO6 based on the wing mean aerodynamic chord. The aero- 
dynamic character is t ics  in pitch were determined for   the wfng-elevator 
configur&ions  with and without  the end p la te  through an angle-of- 
attack  range from positive t o  negative wing stall  and at various control- 
surface  deflections between Oo and approximately 30°. 

DISCUSSION 

Elevator  Effectiveness of Deflectable Wing-Tip Controls 

L i f t ,  drag, and pitching-moment data  obtained  through  the angle-of- 
attack  range from t e s t s  of the 45O sweptback-wing model at   posi t ive 
deflections of the  wing-tip  elevators  are  presented in  figures 3 t o  6 .  
In order t o  show the.varriation  of pitching-moment coefficient  with ele- 
vator  deflection,  the  values of incremental pitching-moment coeffi- 
cient AC, obtained f r o m  figures 3 t o  6 w e r e  cross-plotted against 
elevator  deflection  as shown in   f igure  7. Inasmuch as a l l  wing-elevator 
configurations  investigated were symmetrical and had symmetrical prof i les  
(although  the end plate  was asymmetrically  placed on the wing), the  
incremental pitching-moment data obtained at   posit ive  elevator  deflections 
and negative  angles of a t tack  ( f igs .  3 t o  6 )  were cross-plotted,with 
opposite signs in   f igure  7 to provide da;ta at negative  elevator  deflections 
and positive  angles of attack. 

In  general,  the  data of figure 7 show that,   in  the  negative  deflec- 
t i on  range, the  elevator  pitching  effectiveness  increased  with  increase 
fn angle of attack; however, in the  posit ive  deflection range, the  ele- 
vator  effectiveness  decreased  with  increase  in  angle  of  attack - part ic-  
ularly for  angles of  attack greater than about eo. In addition, a 
reversal of effectiveness is  exhibited at   large  posit ive  values of a 
and 6 by the wing-elevator  configurations employing the end plate.  
This loss and reversal  of effectiveness  probably  result from the   s t a l l i ng  
of the  wing-tip  control  at  large  positive values of  a and 6. 



A comparison of the  values of the  slope of pitching-moment coeffi- 
cient  against  elevator  deflection (3% for  the four configurations 
investigated i s  shown in  the following  table: 

.. 

~~ 

cmg 
Elevator  plan form - 

Plain wing Wing with end p la te  

Parallelogrammic 

- .0020 - .oom Triangular 

-0.0012 -0.0013 

r A 

In general, the data of th i s  table and of figures 3 t o  7 show that 
the triangular-plan-form  elevator was more effective  than  the 
parallelogrammic-plan-form control  over most of the deflection and 
angle-of-attack  range. This ef fec t   resu l t s  from the greater  longitu- 
dinal moment arm between the aerodynamic center of the  wing-tip  control 
and the wing pitching-moment axis  associated  with the triangular-plan- 
form than  for  the parallelogrammic-plan-form elevator, and also fYom 
the larger  aspect  ratio of the triangular-plan-form.contro1. The end 
plate  on the wing generally had l i t t l e   e f f e c t  on the elevator  effec- 
tiveness,  except  as  previously  noted a t  large  positive  values of a 
and 6, where a greater loss in  elevator  effectiveness WSS exhibited 
by configurations employing the end plate. This slight effect  of the 
end plate on the  longitudinal  control  characteristics  contrasts  sharply 
w i t h  the  sizable  effect  of the end plate  on the lateral control  charac- 
t e r i s t i c s  of the same wing-control-surface  configurations  reported  in 
reference 1. Thus, it appears tha t  the end plate  either  affected  only 
slightly the induction  effects on the  longitudinal  control  character- 
i s t i c s ,   o r  that the  induction effects on the longitudinal  control 
characterist ics of all wing-control-surface  configurations were  gen- 
erally small on the  present wing. 

" 

In  reference 1, it was noted that the w5ng-tip control   in  the  
presence of  the end plate  appeared to   ac t   essent ia l ly  as an independent 
semispan  wing,  and, as such, the lateral control  characteristics of the 
two plan forms of control surface were  computed  and were found t o  be in 
good agreement with experimental  results.  In  order t o  determine  the 
feas ib i l i ty  and the  degree  of  accuracy  of computing the  elevator  pitching 
effectiveness,  values of  ACm were  computed by the  relationship 

LC, = Pftching moment of wing-tip  elevator 
9=- 

- 

d Luft of  wing-tip  elevator)  cos a + (Drag of  wing-tip  elevator) sin a 
q S F  I -  
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fo r  several  elevator  deflections and at various wing angles  of attack. 
Values of lift, drag, and pftchfng moment of the  wing-tip  controls  used 
in the preceding  equation were obtained f'rom references 4 and 5 fo r  the 
wing plan forms most nearly comparable t o  the plan forms of t h e   p a r d -  
lelogranrmic and triangular elevators,  respectively. The estimated 
values o f  thereby  calculated are ccmrpared with test values of A% 
obtained  with  the end pla te  in  figure 8 and, i n  general, are shown t o  be 
in  reasonable agreement at mnall: angles of attack. The poorer  agree- 
ment exhibited between estimated and experimental  values of AC, at the 
larger  angles of attack is  a t t r ibu ted   to   the  possible aerodynamic induc- 
t ion   e f fec ts  o r  interference effecks caused by the wing-tip and elevator 
inters&tion. In addition, some discrepancy  probably  resulted  because 
the  plan form and section of the wing-tip  controls  investigated  differed 
somewhat from  hose of the wfngs of references 4 and 5 for  which data 
were used in the calculations of Em; thus differences occur i n  the 
aerodynamic character is t ics ,   par t iculmly at large  angles of attack. 
Because the  calculations gave a good approximation t o  the test values 
of ACm a% low angles of attack and t o  the var ia t ion of  L Y ~ ~  w i t h  a 
and 6 f o r  the wing with  the end plate,  and because the end p la te  on 
the wlng generally had little effect  on the  elevator  effeckiveness, it 
is  thought that the  elevator  effectiveness of wing-tip  controls, such as 
those of the configurations  'investigated, may be estimated by this  pro- 
cedure for  preliminmy  design  purposes. 

Comparison of Elevator  Effectiveness of Deflectable Wing-Tip . 
Controls and a 0 . 2 5 ~  Trailing-Edge Flap-- Control 

7 

In order t o  determine the relative  effectiveness for  a tailless air- 
plane  configuration of the  wing-tip  controls.investigated,  deflections 
of the  wing-tip  controls  required to trim values of  C, of 0.04 and 
-0.04 through a large  range of l i f t  coefficients axe compared in   f igure 9 
with the  values of 6 required  to trim similar values of C, of an 
unsealed 0 .25~  flap-type  trailing-edge  elevator on the  same wing. It 
should be noted that the comparisons shown in   f igure  9 are purely  i l lus- 
trative,   but  the  relative  effectiveness of the various  controls is 
expected t o  be similar for  other  values of C,. The data  presented  for 
the flap-type  trailing-edge  elevator were obta'ned by interpolating 
unpublished  experimental data f o r   0 . 2 5 ~   p l a i n  flaps of .various spans on 
the present wing (excluding the Kfng-tip  controlsj in order  to  provide 
data f o r  a 0.25~ flap having the same area as each of the  wing-tip 
controls. 

The data o f  figure 9 show the  conventional  flap-type  control t o  be 
more effective than either of the  wing-tip  controls at positive (down) 
elevator  deflections. A t  negative (up) elevator  deflections, however, 
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the  flap-type  control i s  seen to  lose  effectiveness  rapidly wlth  increase 
i n  lif% coefficient so that the  triangular  wing-tip  control i s  more 
effective  than the flap-type  control  over almost the  ent i re  lift range 
and the  parallelogrammic  wing-tip  control i s  more effective  than  the 
flap-type  control at high lift coefficients. Because negative  elevator 
deflections  are  usually used i n  flight fo r  trimming the  airplane and 
for maneuvering - particularly.   in  take-off and landing - and only small 
positive  elevator  deflections  are sometimes required, the  significance 
of these  effects can readily be realized. Moreover, the comparison pre- 
sented is for low-speed data and does not show the effects  of Mach 
nlzmber on the relative  effectiveness  of the various  control  surfaces. 
References 6 and 7 and ungublished data show t h a t  the effectiveness of 
each  of  the  controls  considered  should  increase with increase in Mach 
number up t o  high  subsonic speeds. These data  also show, however, t ha t  
the  effectiveness of the  conventional  flap-type  elevator  generally 
decreases measurably i n  passing  through the transonic  region and i s  much 
lower at supersonic  speeds than a t  subsonic  speeds, whereas the e'ffec- 
tiveness of the t i p  controls  generally i s  only s l igh t ly  Elffected in   t he  
cri t ical   transonic  region and i s  almost as good at supersonic  speeds as 
a t  subsonic  speeds. In  addition,  the data of references 8 t o  10 and 
unpublished  data  indicate  that  the  hinge moments of  conventional  flap- 
type  controls  probably w i l l  be extremely difficult t o  balance aerodynami- 
cal ly  over the speed range f r o m  subsonic t o  supersonic  speeds, whereas 
the  hinge moments of the tip controls - and particularly  the  tr iangular 
t i p  control - may  more easi ly  be closely  balanced  over  the  entire speed 
range. Thus, deflectable  wing-tip  controls seem t o  compare favorably 
with  conventional  flap-type  trailing-edge  controls  (of  the same area) 
for  producing low-speed longitudinal  control on a  swept-wing t a i l l e s s  
a i rc raf t  and should compare  even  more favorably at high speeds  than  the 
present  data show. In addition, because deflectable  wing-tip  controls 
were shown t o  produce adequate lateral   control  for  deflections  of 30° 
t o  -30' (reference 1) , it fs thought that they may be used as elevons 
(or  a i lava tors )   to  produce both  longitudinal and lateral control on swept- 
wing tai l less  aircraf%. 

CONCLUSIONS 

A low-speed investigation of triangular- and parallelogrammic-plan- 
form deflectable  wing-tip  elevators on a low-aspect-ratio,  untapered, 
45O sweptback semispan wing with and without 821 end plate  (simulating a 
ve r t i ca l   f i n )  was performed in  the Langley 300 MPH 7- by 10-foot  tunnel. 
The rectangular end plate  was mounted on the wing just  inboard of the 
elevators. The resu l t s  of the  investigation  led to the following 
conclusions: 



I. Deflectable  wing-tip  elevators compare favorably  with conven- 
tional  flap-type  trailing-edge  controls of  the same area  for  producing 
longitudinal  control on a swept-wing tailless a i r c ra f t .  

2. The triangular-wing-tip  elevator was generally  sl ightly more 
effective  than  the pmallelogranrmic-wing-tip elevator. 

3.  The end p la te  had only a slight effect  on the  effectiveness of 
either  elevator plan form. 

4. A comparison between experhental  and estimated  values o f  
pitching moment produced by the  deflectable wlng-tip controls showed 
that  their   effectiveqess could  be  predicted  with  reasonable  accuracy 
at low angles of attack. 

Langley Aeronautical  Laboratory 
Rational Advisory Cmmlttee for  Aeronautics 

Langley Air Force  Base, Va.  
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Figure 1.- Geometric characteristics o f  the 45' sweptback wing, w i n g -  
t i p  controls, an8 end plate.  (AU dimemione in inches unless other- 
wise noted. ) 
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Figure 2.-  The 45' meptback semiappan KLng mounted in the Langley 3(x, MPH 
7- by 10-foot tunnel. Plain w i n g  vi% triangular --tip elevator. 
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Figure 3. - Aerodynamic charac-cerietica of the 45O sweptback wing for  
varioua  deflections of the parallelogramic --tip elevator. 
Plain wing. 
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Figure 4. - Aerodynamic characteristics of the  45' sweptback wFng for 
various deflections of the triangular --tip elevator. plain 
w i n g .  
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Figure 5. - Aerodynamic characterist ics of the 45O sweptback wing fo r  
various  deflections of the parallelogrammic  uing-tip elevator. 
W i n g  w i t h  end plate. 
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Figure 6.- Aerodynamic characterist ics of the 45' sweptback w i n g  for 
various deflections of the triangular wing-tip  elevator. Wing with 
end plate. 
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Figure 7.- Incremental pitching-moment coefficiente produced by wing-tip 
elevators on the 45O aweptback wing. 
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Figure 8. - Comparison of experimentally determined valuee of d(=m with 
estimated  value6 of b(=m f o r  deflectable wing-tip elevators i n  the 
presence of &21 end plate. 
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Control  configuration 

"- Porallelogromrnic wing - f ip efe vu for 
on plain wing 

"- Triangular wing-tip elevator 

on plain wing 

0 . 2 5 ~  conventional flap- type elevator 
(same area as wing-tip elevators) 
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Figure 9. - Conrpazison of elevator effectiveness of wing-tlp elevators 
and a 0.25~ flap-type trailing-edge elevator on a 45O sweptback wing. 


